A Multiple Interval Chebyshev-Gauss-Lobatto Collocation Method for Ordinary Differential Equations
نویسندگان
چکیده
We introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain the hp-version bound on the numerical error of the multiple interval collocation method under H-norm. Numerical experiments confirm the theoretical expectations. AMS subject classifications: 65L05, 65L60, 41A10, 65L70
منابع مشابه
Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder
In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...
متن کاملA New Spectral Algorithm for Time-space Fractional Partial Differential Equations with Subdiffusion and Superdiffusion
This paper reports a new spectral collocation algorithm for solving time-space fractional partial differential equations with subdiffusion and superdiffusion. In this scheme we employ the shifted Legendre Gauss-Lobatto collocation scheme and the shifted Chebyshev Gauss-Radau collocation approximations for spatial and temporal discretizations, respectively. We focus on implementing the new algor...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملPii: S0168-9274(99)00114-2
This paper concerns the iterative solution of the linear system arising from the Chebyshev–collocation approximation of second-order elliptic equations and presents an optimal multigrid preconditioner based on alternating line Gauss–Seidel smoothers for the corresponding stiffness matrix of bilinear finite elements on the Chebyshev–Gauss–Lobatto grid. 2000 IMACS. Published by Elsevier Science...
متن کاملA Chebyshev-Gauss-Radau Scheme For Nonlinear Hyperbolic System Of First Order
A numerical approximation of the initial-boundary system of nonlinear hyperbolic equations based on spectral collocation method is presented in this article. A Chebyshev-Gauss-Radau collocation (C-GR-C) method in combination with the implicit RungeKutta scheme are employed to obtain highly accurate approximations to the mentioned problem. The collocation points are the Chebyshev interpolation n...
متن کامل